
9 
N 
3 
3 

I 
Y 
P 
x 

45 

v) 

n 
0 
I 

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS 
SCHOOL OF ENGINEERING 
OLD DOMINION UNIVERSITY 
NORFOLK, VIRGINIA 

C O N N E C T I O N  B E T W E E N  WALL STREAKS A N D  T I M E  
A V E R A G E  VELOCITY P R O F I L E S  I N  A T U R B U L E N T  
B O U N D A R Y  L A Y E R  

BY 

Robert L. Ash, P r i n c i p a l  I n v e s t i g a t o r  

c 

Progress  Report  
For t h e  pe r iod  May 4 - November 3, 1981 

Prepared f o r  t h e  
Nat iona l  Aeronaut ics  and Space Adminis t ra t ion 
Langley Research Center 
Hamp ton, V i rg in i a  

Under 
Research Grant NAG 1-1 2 1 
Joshua C. Anyiwo, Technical  Monitor 
High Speed Aerodynamics Div is ion  

October 1981 



DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS 
SCHOOL OF ENGINEERING 
OLD DOMINION UNIVERSITY 
NORFOLK, VIRGINIA 

C O N N E C T I O N  B E T W E E N  WALL STREAKS A N D  T I M E  
A V E R A G E  V E L O C I T Y  P R O F I L E S  I N  A T U R B U L E N T  
B O U N D A R Y  L A Y E R  

BY 

Robert L. Ash, P r i n c i p a l  I n v e s t i g a t o r  

, 

Progress  Report 
For t h e  pe r iod  May 4 - November 3, 1981 

Prepared f o r  t h e  
Nat iona l  Aeronaut ics  and Space Adminis t ra t ion 
Langley Research Center 
Hamp ton,  V i rg in i a  23665 

Under 
Research Grant NAG1-121 
Joshua C. Anyiwo, Technical Monitor 
High Speed Aerodynamics Div is ion  

Submitted by t h e  
Old Dominioh Univers i ty  Research Foundation 
P.O. Box 6369 
Norfolk, V i rg in i a  23508-0369 

October 1981 
, 



CONNECTION BETWEEN WALL STREAKS AND TIME-AVERAGED VELOCITY 

PROFILES I N  A TURBULENT BOUNDARY LAYER 

BY 

R. L. Ash* 

Abstract  

The e f f e c t  of coherent flow s t r u c t u r e s  on the  mean ve loc i ty  p r o f i l e  of 

a f l a t  p l a t e  boundary l aye r  has been invest igated.  By assuming the near 

w a l l  " s t reak  s t ruc tu re"  can be modeled by power series expansions i n  terms 

of the w a l l  normal coordinate ,  t he  equations of motion have been used t o  

def ine  a s o l u t i o n  domain. 

s t r eak  funct ions can be accommodated by series representa t ions  of t he  mean 

ve loc i ty  p r o f i l e  ou t  t o  y+ of about 15, where the  s o l u t i o n  and series begin 

t o  depart. That r e s u l t  is  i n  good agreement with the  experimental obser- 

va t ions  of Kline e t  a l e2  

implied by i n t e r p r e t i n g  the  c o e f f i c i e n t s  f o r  t he  mean ve loc i ty  p r o f i l e  i n  

terms of s t r e a k  func t ions  is  i n  good agreement with o the r  data. 

Requirements imposed by the  time-averaged w a l l  

I n  addi t ion ,  t he  Reynolds stress d i s t r i b u t i o n  

*Professor, Department of Mechanical Engineering and Mechanics, Old Dominion 
University, Norfolk, VA . 23508. 



Discussion 

Recently Cantwelll has summarized research on organized structure in . 
turbulent flows. The structural , features in a turbulent boundary layer 

include low-speed streaks near the wall which are intermittant and highly 

three-dimensional. Kline et aL2 in 1967 reported-first details of those 

structures and defined a cycle of events which, though distributed randomly 

in space and time, are repetitive. If attention is restricted to the sim- 

plest case of a constant density, flat plate boundary layer with no pressure 

gradient, the question of how the three-dimensional, near wall flow struc- 

ture affects the time-averaged velocity profile can be addressed. 

In the vicinity of the wall (y = 0), the inner boundary conditions 

obviously must dominate. Furthermore, it is reasonable to assume that the . 
three-dimensional, unsteady equations of motion have a solution which can be 

expanded in a power series of y near the wall. The dimensionless governing 

equations are 

+ +  
v * u = o  

where the velocity vector ?i is made dimensionless with the friction 

velocity u!, the coordinates are normalized with respect to the boundary- 

layer thickness 6 ,  pressure is normalized with respect to wall shear stress 

TW, and time is expressed in units of S/+. Zhe term R is a Reynolds 

number defined by R = uTS/v. It should be noted that the dimensionless 
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x-component of ve loc i ty  u, i s  t h e  same as u+, and t h e  dimensionless v e r t i c a l  

y-coordinate is r e l a t e d  t o  y+ by 

RY = Y+ (3)  

If t he  ve loc i ty  components u, v, and w, and pressure are assumed 

express ib le  i n  power series of y ,  cons is ten t  with t h e  inne r  boundary condi- 

t i ons  and cont inui ty ,  they mst t ake  the  form: 

W 

and 
W 

where Pw(x,z,t) i s  t h e  w a l l  pressure. By equating c o e f f i c i e n t s  wi th  t h e  

same powers of y i n  Eqs. (1) and (2 ) ,  t he  terms i n  the  ve loc i ty  and pressure 

power series can be r e l a t e d  t o  ul ,  w l ,  and Pw. Consequently, 
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+ 2 W l  - y4 + ... 

. au, a3 u1 a3w1 

a 23 
v = -  - ' ( a x  2 -+- a , : ) ~ - ~ ( ~ + ~ ) . . + ~ [ . - . . -  ax3 

+ 2 U l  - y4 + e.. 
ax 

+&(; axaz 
+ a ) I y 3  + ... 
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These series expansions should represent  f u l l y  t h e  por t ion  of t h e  three-  

dimensional flow s t r u c t u r e  which is dominated by the  w a l l  boundary condi- 

t ions.  

mined without imposing "outer" boundary conditions character ized by t h e  flow 

However, t h e  func t iona l  forms of ul,wl, and Pw cannot be deter-  

s t r u c t u r e  i n  t h e  outer  por t ion  of t h e  boundary layer.  Since "bursting" and 

"inrush" f l o w  phases are both in t e rmi t t en t  and occur a t  t h e  top of s t r e a k  

s t r u c t u r e s ,  appl ica t ion  of realistic outer  boundary condi t ions t o  t h e  s t r eak  

s t ruc tu res  is not cur ren t ly  possible.  

Al te rna t ive ly ,  if one assumes t h a t  t h e  near w a l l  flow s t r u c t u r e  i s  rep- 

resented by Eqs.  (8) through ( l l ) ,  t he  connection between these observed 

three-dimensional flows and t h e  known two-dimensional time-averaged ve loc i ty  

p r o f i l e s  can be addressed. 

streaks*'  were s t a b l e  out  t o  between 8 and 12 w a l l  u n i t s  (8 < y+ < 12).  

They observed fu r the r  t h a t  o s c i l l a t i o n  and "bursting" of these  s t r u c t u r e s  

took place when they extended out t o  between 10 and 30 w a l l  uni ts .  

those observations,  t he  time-averaged forms of Eqs.  

be cons is ten t  with t h e  time-averaged ve loc i ty  p r o f i l e  da ta  beyond y+ = 8, 

but  not  beyond y+ = 30. 

flow over a f l a t  p l a t e  with no pressure gradient  is the  most documented 

experimentally and therefore  a t t e n t i o n  is r e s t r i c t e d  here  t o  Eq. (8). 

Kline et  aL2 found t h a t  w a l l  bound "low-speed 

Based on 

(8) through (11) should 

The x-component of ve loc i ty  (u) f o r  tu rbulen t  

Making use of the  i d e n t i t y :  

Eq. (8) can be averaged with respect t o  time f o r  two-dimensional flow p a s t  a 

f l a t  p la te  t o  yield:  
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Furthermore, the ti,= average of u l  (x,z,T) must be equal t o  R. 

N o w  Reynolds number, R, w a s  assumed constant i n  t h e  dimensionless 

formulation of the equations of motion. However, i n  order  t o  i n v e s t i g a t e  

the magnitude of t h e  c o e f f i c i e n t s  i n  Eq. (13), v a r i a t i o n  of R with dimen- 

s ion le s s  x must be examined. 

where ReL and C; are the  length-based Reynolds number (UL) - and l o c a l  s k i n  

f r i c t i o n  c o e f f i c i e n t ,  r e spec t ive ly ,  over a range of length-based Reynolds 

numbers from lo5  t o  lo9. It can be shown t h a t  

Schlichting3 has tabulated R, ReL, and C' f 

and the v a r i a t i o n  of R with x over t he  e n t i r e  range of length Reynolds 

numbers is shown i n  Figure 1. For length Reynolds numbers above 200,000, 

R va r i e s  semilogarithmically with x and i s  w e l l  approximated by: 

R = 2.42 exp(0.1615 x )  

Consequently, 

0.026 R d2 R 

dx? dx? 

dL u1 - -  - - =  
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For boundary-layer flow, t h e  dimensionless Reynolds stress, u (= -m) ,  
- 

v a r i e s  with t h e  t h i r d  power of y, leaving t h e  w a l l / +  

can be r e l a t ed  d i r e c t l y  t o  t h e  t h i r d  de r iva t ive  of t h e  dimensionless 

Reynolds stress with r e spec t  t o  y+ a t  t h e  w a l l  (uwf ' I )  by: 

Furthermore, u1v2 

R -  

4 24 
- u 1 9  y4 = - - a  

(17) 

a U: 
a x  

and although - need not be zero,  i t  must c e r t a i n l y  be small compared t o  

- 
u l ~ .  Consequently, t h e  c o e f f i c i e n t  f o r  y4 i n  Eq. (13) i s  w e l l  approximated 

by Eq. (17) and u t i l i z i n g  the  f a c t  t h a t  u = u', along with Eq. (161, 

we can write 

I l l  

u+ = y+ - 8.7 x lo3 (y+)3 - 4 (y+Y + ... 
R2 

For Y+ g r e a t e r  than 5, but less than 35, experimental v e l o c i t y  da t a  

cannot be approximated simply by e i t h e r  a l i n e a r  o r  a logarithmic v e l o c i t y  

prof i le .  

ve loc i ty  p r o f i l e  data i n  t h a t  range are represented very w e l l  by t h e  

equation 

However, S p a l d i n s  and Kleinstein6 have . shown t h a t  experimental 

+ I  + + 
(KU )2 - (KU I3 

- 1 - K U  - + +  
2 6 

where Spalding used K = 0.4, B = 5.5. 

d i r e c t l y  t o  a power series i n  u (y  ), but a polynomial f i t  of Eq. (19) 

That equation cannot be inve r t ed  

+ +  
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i s  less s e n s i t i v e  t o  scatter than a polynomial f i t  of tabulated experimental 

data. 

A regression a n a l y s i s  computer program has been used t o  generate  poly- 

nomials i n  t h e  form 

10 

n=3 

u + = a l y  + + 1 an (y+ln 

+ +  < y,, which approximate Eq. (19) over a prescribed i n t e r v a l  0 < y where 

yH was var ied between 5 and 100. The polynomials were generated by c rea t ing  

da ta  t ab le s  cons i s t ing  of 101 "data points" which were produced by using Eq. 

(19) t o  determine a maximum u corresponding t o  yM, then computing a set of 

yn(u ) where u = (n-l)%/100. The zero i n t e r c e p t  (a ) and a2 c o e f f i c i e n t s  

were excluded on physical  grounds, while al w a s  allowed t o  vary even though 

i ts  value was required physical ly  t o  be unity. The polynomial was t runcated 

+ 

+ + 
+ +  + + 

n n 0 

a t  t h e  t en th  power because t h a t  was considered a high enough power of y + 
t o  simultaneously allow t h e  regression ana lys i s  program t o  exclude unneeded 

terms and s t i l l  remain e f f i c i e n t  computationally. 
+ 

In  order  t o  desens i t i ze  t h e  polynomial f i t  from t h e  magnitude of yM 
+ + + 

[ s ince  (yM)lo could be very l a r g e ] ,  y w a s  normalized i n  terms of yM (7 = 

+ +  
y /yM) and t h e  polynomials w e r e  found t o  take t h e  form 

+ 
over t h e  range 5 < y, < 20. Variat ion of those c o e f f i c i e n t s  with respect t o  

+ YM are shown i n  Figure 2. 
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Based on previous discussion, bl mst be uni ty-and,  as can be seen i n  

Figure 2, i t  meets t h a t  condi t ion t o  a very good approximation over t h e  

e n t i r e  range. The c o n s t r a i n t s  imposed on b3 from Eq. (18) are not  as e a s i l y  

m e t .  In f a c t ,  s ince  R must be g r e a t e r  than 200 f o r  any turbulent  flow, i t  

i s  apparent from E q .  (18) t h a t  % rmst be a very s m a l l  negat ive number. 

That requirement restricts t h e  polynomial f i t  t o  15 < y$ < 15.3. 

Since g = 0 f o r  v i r t u a l l y  a l l  turbulent  boundary-layer flows, t h a t  

case is  taken as t h e  nominally co r rec t  polynomial f o r  u+ i n  the  w a l l  flow 

regime. There 

+ + + 4  + 6  
= 1 . 0 ~  - 2.21 x ~ O J ) ( ~  + 7.21  x 1 0 - 7 ( ~  - 2.7 x 10-12(~+)10 (22) 

The va r i a t ion  of u+ with y+ given by Eq. (22) i s  compared with Eq. (19) 

using Spaldings' constants  i n  Figure 3. 

are e s s e n t i a l l y  i d e n t i c a l  over t h e  range of t he  f i t  and t h a t  t h e  polynomial 

depa r t s  rapidly outs ide of t h e  domain. 

about 15 is remarkably cons i s t en t  with the s t r e a k  observations of Kline e t  

a l e2  

dominated by w a l l  requirements can be modeled out t o  a y+ of about 15 

where coupled i n t e r a c t i o n s  o r  i n s t a b i l i t i e s  must then be considered- 

The Figure shows t h a t  t h e  curves 

The good agreement out t o  a y+ of 

The present results suggest t h a t  three-dimensional flow s t r u c t u r e s  

Final ly ,  t h e  f a c t  t h a t  b,+ i s  r e l a t e d  d i r e c t l y  t o  t h e  t h i r d  d e r i v a t i v e  

of 'z1v a t  t h e  w a l l  can be used as a f u r t h e r  check of t h e  physical  cons i s t -  

ency of %* (22). By i n t e g r a t i n g  a,"' implied from Eq. (22) and 

requir ing t h a t  o o ' and d ' '  be zero a t  the  w a l l ,  i t  i s  found t h a t  w' w W 
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+ + 
U ( Y  ) = -uV (y ) = 0.00088 

This r e l a t ionsh ip  is compared with Townsend's formula7: 

- 
-uv 5 0.0006 (y+y 

and the experimental da t a  of Schubauer8 and Laufer' ( f o r  a pipe flow) i n  

Figure 4. Since the next term i n  Eq. (23) w i l l  necessa r i ly  reduce t h e  

magnitude of G, t h e  agreement of t h e  present ana lys i s  with t h e  o the r  

d a t a  i s  very good. 

Conclusions 

We have s h a m  t h a t  a polynomial f i t  of Spaldings' equations f o r  u+ 

y i e l d s  a so lu t ion  which i s  cons i s t en t  with requirements imposed by a t i m e -  

averaged s o l u t i o n  t o  t h e  equations of motion. If one accepts  t h e  hypothesis 

t h a t  the f l m  s t r u c t u r e s  along the w a l l  of a f l a t  p l a t e ,  turbulent  boundary 

l a y e r  should be modeled mathematically as power series i n  y, t h e  t i m e  

average of t h a t  so lu t ion  is cons i s t en t  with classical ve loc i ty  p r o f i l e  d a t a  

Out t o  Y+ = 15. 

begin t o  diverge from t h e  requirements imposed by the  equations of motion. 

These r e s u l t s ' a r e  cons i s t en t  with t h e  s t r e a k  observations of Kline e t  a L 2 ,  

and our r e s u l t s  suggest t h a t  t h e  mathematical character  of t h e  s t r e a k  

s t r u c t u r e  changes above y+ of 15. 

A t  t h a t  point ,  t he  c o e f f i c i e n t s  i n  t h e  polynomial f i t  

A l o g i c a l  explanation f o r  t h a t  change i s  i n t e r m i t t e n t  coupling be- 

tween ou te r  and inner  flow s t r u c t u r e s  beyond y+ = 15. 

be through a superposit ion of two s t r u c t u r e s  o r  an i n s t a b i l i t y  produced 

by a disturbance from t h e  ou te r  flow. 

Coupling may e i t h e r  

Under those conditions,  t he  w a l l -  

10 



con t ro l l ed  s o l u t i o n  i s  app l i cab le  f o r  only p a r t  of t h e  cycle. 

t he  r e s u l t s  suggest that a series so lu t ion  which is  i n  some sense pe r iod ic  

i n  z and t can be employed t o  model s t r eaks  out t o  y+ of 15 without d i r e c t  

considerat ion of t he  ou te r  flow s t ruc tu res .  

Concurrently, 

Final ly ,  t h e  good agreement between the  Reynolds stress es t ima t ion  

r e s u l t i n g  from this approach and experimental data  suggests t h a t  t he  poly- 

nomial series based on a w a l l  flow s t r u c t u r a l  hypothesis i s  c o n s i s t e n t  with 

t h e  observed physics. 
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Figure 1. Variat ion of Reynolds number (R) with downstream dis tance  
i n  u n i t s  of boundary-layer thickness.  
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Figure 4 .  Comparison between the  predicted Reynolds stress leav- 
ing t he  w a l l  and the experimental measurements of 
Schubauer and Lauf er '. 
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